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1. INTRODUCTION 

Future Anny software systems will continue to increase in complexity as long as Army hardware 

continues to get more sophisticated and mission needs more challenging. Life-cycle costs for these 

systems will continue to rise. It is estimated that life-cycle costs of the over 350 software systems that 

the U.S. Army Materiel Command is currently responsible for will exceed $35 billion. The maintenance 

costs for these systems is estimated at between $17-25 billion (Piersall 1994). Current software 

development and maintenance practice will soon become insufficient to handle the evolution of this 

software at a reasonable cost; hence, more reliable and efficient, computer-aided methods must be adopted 

in order to keep pace. 

One such method is computer-aided prototyping. This method not only improves software 

development activities but benefits software maintenance as well. The benefits provided by 

computer-aided prototyping to software maintenance start in the initial phases of system development. 

If current methods are used to develop and maintain this software, software costs will continue to rise, thus 

counteracting the decreasing budget trend. What we need are software development and maintenance 

methods which take advantage of automation and decrease costly human involvement. 

Computer-aided prototyping is one such method that reduces initial development time while allowing 

the development software to be maintained using the same prototyping tools. In computer-aided 

prototyping, quickly built and iteratively updated prototypes of the intended system are demonstrated to 

the user. Each successive iteration of the prototype resembles more closely the final intended version of 

the software. The final accepted prototype is a very close approximation of the intended software system. 

Since the prototype is written in a specification language translatable to a high-level programming 

language such as Ada, the code produced by the prototyping environment can be used in the final software 

product 

This same prototyping environment can also be used to perform maintenance on a production version 

of a software system. Since translation mechanisms may also be used to translate high-level programming 

code into the prototyping language (Altizer and Berzins 1992), a production version of the software system 

can be translated into the prototyping language, loaded into the prototyping environment, updated, and 

translated back into the high-level programming language. This is useful because the prototype description 

is significantly simpler than the production code if the prototype is expressed in a notation tailored to 
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support modifications. In addition, the software tools in the computer-aided prototyping environment can 

help carry out the required modifications rapidly (Luqi 1989). This research impacts both of these roles 

for rapid prototyping. We concentrate on application of this technology to software maintenance, since 

the majority of maintenance costs are associated with enhancement and refinement rather than correcting 

faults (Piersall 1994). 

2.  CHANGE-MERGING 

Change-merging is the process of automatically combining the effects of several changes to a software 

system (Dampier, Luqi, and Berzins 1994). Early version control systems such as the source code control 

system (SCCS) (Silverberg 1992) and the revision control system (RCS) (Tichy 1982) provide primitive 

change-merging facilities based on string editing operations on the source text without considering the 

effects on program behavior. However, automated tools must provide guarantees to designers regarding 

program behavior. Semantics-based change-merging seeks to construct a program whose behavior contains 

all of the significant changes made in the modified versions while maintaining any behavior common to 

all three versions. 

We have constructed a model and algorithm for automatically updating different versions of a software 

prototype with changes made to the base version as shown in Figure 1. These changes are applied to the 

base version and propagated through all of the different production versions by using the change-merging 

algorithm. This algorithm accepts a base version and two modified versions of the program and uses 

program slicing (Weiser 1984) to find the part of the base version preserved in both of the modifications, 

as well as the parts of the modifications which are different from the base. The algorithm then combines 

these three pieces into a merged program containing the functionality peculiar to each of the modified 

versions. This method is applied to the change propagation problem by using the base version of the 

program as the base for the change-merge, the production version to be updated as one modification, and 

the changed base version as the other modification as shown in Figure 2. As long as the change made 

to the base does not conflict with the production version, the result will be an updated production version 

containing both its original functionality and the update. 

A working version of this change-merge algorithm has been developed for the computer-aided 

prototyping system (CAPS) (Luqi 1989), using the prototyping system description language (PSDL) (Luqi 

1988) as its base language. 



Algorithm Change-Merge(BASE, A, B : psdl_program) return psdl_program is 
begin 

Change-Merge the Specifications; 
—Each individual component of the specification is change-merged according to the rules 

defined 
-by Dampier (1990, 1994). 

Change-Merge the Graphs; 
Build Prototype Dependence Graphs for each version; 
Calculate the Preserved Part of BASE in both A and B; 
Calculate the Affected Part of both A and B with respect to Base; 
Graph-Union the Preserved Part with the Affected Parts of both A and B; 
Check Correctness of Merge using Compare Graphs; 

Change-Merge the remainder of the Implementations; 
-The stream and timer declarations along with the control constraints are merged according to 

Figure 1. Change merge algorithm. 

Figure 2. Change propagation through multiple versions of a software system. 

3. SLICING OF PROTOTYPES 

The change-merging algorithm is based on the ability to partition a portion of the prototype's 

functionality using prototype slicing. The slice is constructed by analyzing the prototype's dependence 



graph with respect to a set of its data streams. The slice captures only that portion of the prototype that 

can possibly affect the values written to one of those streams. 

A prototype dependence graph (PDG) for a prototype P is an augmented, fully expanded, PSDL 

implementation graph GP = (V, E, Q. The set of vertices, V, has been augmented with an external vertex, 

EXT. The set of edges, E, has been augmented with an edge from each vertex without an outgoing edge 

to the EXT vertex. Furthermore, a timer dependency edge is added from Vj to Vj when Vj, Vj e V and Vj 

contains timer operations that affect the state of a PSDL timer read by Vj. A slice of a PSDL prototype 

P with respect to a set of streams X, SP (X) = (V, E, Q, is a subgraph of the PDG, GP, which includes 

the part of P affecting the values written to that set of data streams. A slice is constructed as follows: 

(1) V is the smallest set that contains all vertices v{ e GP that satisfy at least one of the following 

conditions: 

(a) Vj writes to one of the data streams in X. 

(b) Vj precedes V: in GP, and Vj e V. 

(2) E is the set that contains all of the data streams xk e GP which satisfy one of the following 

conditions: 

(a) xk G X. 

(b) xk is directed to some Vj e V. 

(3) C is the set that contains all of the timing and control constraints associated with each operator 

in V and each data stream in E. 

An example of a PDG is shown in Figure 3. This graph is the implementation graph for a prototype 

of the Patriot missile defense system. This prototype has five operators and eight streams. A slice of this 

operator taken with respect to one of those streams will contain everything in the prototype mat affects 

the values written to that stream. An example of the slice of this prototype with respect the stream 

tactical status is shown in Figure 4. 



radarmode 

tracki 
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control_Fatriot_ext 

Figure 3. PPG for the Patriot missile defense system, version 1.1. 

radar mod 

track id 

track file 

Figure 4. The slice of Patriot's PPG with respect to the stream tacticalstatus. 

Slices are valuable in change-merging because they partition the prototype into disjoint parts that can 

be considered in isolation without worrying about the rest of the prototype. This guarantees that a slice 

taken from one prototype and placed in another where that slice is still well-formed will behave in 

precisely the same way as it did in the first prototype (Dampier, June 1994). 



4.  SLICING METHOD FOR CHANGE-MERGING OF PROTOTYPES 

We use prototype slicing for change-merging in much the same way program slicing was used in 

Horwitz integration method (Horwitz, Prins, and Reps 1988). We use slicing to calculate the preserved 

part of the base version and affected parts of each modified version when performing a semantics-based 

change-merge of three versions of a prototype. 

Consider two modified versions of the base Patriot prototype, Version 1.1, shown in Figure 3. The 

first modified version, 1.2, shown in Figure 5, is one in which a modified version of the control_Patriot 

module has been installed in a working system. The second modified version, 2.2, shown in Figure 6, 

is a copy of the base in which the display_status module has been updated. The preserved part of the base 

version of the prototype is determined by finding the largest slice common to all three versions. In the 

Patriot system example, this is the slice of Patriot's PDG with respect to the following set of streams: 

{radar_mode, trackjd, missile_track, intercept_angle, target_range, tactical_status, launch_angle, track_file, 

launch_Patriot_ext}. A picture of this slice is shown in Figure 7. 

radar mode 

track 

&* (,9is«>™ <&?v 

control Patriot_2_ext 

Figure 5. PDG for the Patriot missile defense system, version 1.2. 
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Figure 6. PPG for the Patriot missile defense system, version 2.2. 
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Figure 7. Preserved part of the PPG for versions 1.1, 1.2, and 2.2 of the Patriot system. 

The affected parts of the two modified versions are computed by comparing the base version, Figure 3, 

with the modifications, Figures 5 and 6. This comparison is done using prototype slicing. If the slice of 

a modified version with respect to a set of streams is different than the same slice of the base version, then 

those streams are affected parts. Any change between the base and the modified versions is significant 

and must be included in the affected part for that modification. The affected parts of the two modified 

versions of the Patriot prototype are shown in Figures 8 and 9. 



300ms 

control_Patriot_2_ext 

Figure 8. Affected part of the PPG for version 1.2 of the Patriot system. 

2,0W&S 

display_ 
tactical_2_ext 

Figure 9. Affected part of the PPG for version 2.2 of the Patriot system. 

In our algorithm, the change-merged version is built by combining the preserved part with each of the 

affected parts using a graph-union operation. The result of applying the change-merge operation to the 

three versions, 1.1,1.2, and 2.2, of the Patriot prototype is shown in Figure 10. This is a change-merged 

version of the graph but is not yet guaranteed to be semantically correct. The semantic correctness is 

guaranteed only after the change-merged version is compared with each of the modified versions to ensure 

that any changes made in the modified versions are preserved during the change-merge operation. 

We check for correctness by comparing the slices of both the modified version and the change-merged 

version with respect to the streams in the affected part for that modified version. If the slices are the 

same, then we are guaranteed to have preserved the semantic meaning significant to the modified version. 

If the slices are different, then a conflict has occurred between the two modified versions that must be 

resolved by the engineer. 
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Figure 10. Result of change-merging versions 1.1. 1.2. and 2.2 of the Patriot system. 

5. SUMMARY 

We have described a formal method that can significantly improve both the software development and 

software maintenance processes. The method provides the ability for software development teams to work 

on independent parts of a software project and use a computer-aided tool to automatically integrate their 

respective updates. This method can significantly decrease development time, thereby improving customer 

satisfaction with the delivered system. This method can also be used to update different production 

versions of a software system by allowing changes to be made to the base version and automatically 

change-merged with each of the versions in the field. Use of this method will decrease both software 

development and maintenance costs by providing the software engineer with a reliable computer-aided tool 

to decrease their workload. 

Future enhancements to this research include considering abstract data types written in the prototyping 

language, finding ways to resolve more conflicts automatically, and developing methods to change-merge 

programs written in implementation languages like Ada and C++. 
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